59,010 research outputs found

    TFBSTools: an R/bioconductor package for transcription factor binding site analysis.

    Get PDF
    Summary: The ability to efficiently investigate transcription factor binding sites (TFBSs) genome-wide is central to computational studies of gene regulation. TFBSTools is an R/Bioconductor package for the analysis and manipulation of TFBSs and their associated transcription factor profile matrices. TFBStools provides a toolkit for handling TFBS profile matrices, scanning sequences and alignments including whole genomes, and querying the JASPAR database. The functionality of the package can be easily extended to include advanced statistical analysis, data visualization and data integration. Availability and implementation: The package is implemented in R and available under GPL-2 license from the Bioconductor website (http://bioconductor.org/packages/TFBSTools/). Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online

    Mössbauer Spectrometry Study of Thermally-Activated Electronic Processes in Li_xFePO_4

    Get PDF
    The solid solution phase of Li_xFePO_4 with different Li concentrations, x, was investigated by Mössbauer spectrometry at temperatures between 25 and 210 °C. The Mössbauer spectra show a temperature dependence of their isomer shifts (E_(IS)) and electric quadrupole splittings (E_Q), typical of thermally activated, electronic relaxation processes involving ^(57)Fe ions. The activation energies for the fluctuations of E_Q and E_(IS) for Fe^(3+) are nearly the same, 570 ± 9 meV, suggesting that both originate from charge hopping. For the Fe^(2+) components of the spectra, the fluctuations of E_Q occurred at lower temperatures than the fluctuations of E_(IS), with an activation energy of 512 ± 12 meV for E_Q and one of 551 ± 7 meV for E_(IS). The more facile fluctuations of E_Q for Fe^(2+) are evidence for local motions of neighboring Li^+ ions. It appears that the electron hopping frequency is lower than that of Li^+ ions. The activation energies of relaxation did not have a measurable dependence on the concentration of lithium, x
    corecore